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Current Distribution and Impedance of

Lossless Conductor Systems

ROBERT L. BROOKE AND JOSE E. CRUZ

Absfracf-A general method for determining the characteristic im-

pedance of uniform, lossless transmission systems is developed. The tor-

rent distribution withiu the system is determined by means of a matrix

equation programmed for computer solution. Once the current distribu-

tion is known, the inductance per unit length and characteristic impedance

are determined. The results obtained by applying this method to several

rectangular coaxial systems are compared with the predictions of an

approximate aualytic expression. The reflection coefficient of a variable
characteristic impedance coaxial tine is measured on a time-domaiu

reflectometer (TDR), and the results are compared with both the matrix

method and the approximate analytic expression.

INTRODUCTION

A

GENERAL matrix method is developed for deter-

mining the current distribution in the transverse

plane of any uniform, Iossless transmission system.

Once the current distribution is known for an arbitrary

system (Fig. 1), the inductance per unit length and char-

acteristic impedance can be determined. With an additional

step, omitted in this paper, the transverse magnetic field can

be mapped for the system under consideration.

This method is not limited to any particular cross-sectional

configuration and requires no dimensional restrictions. To

provide a comparison with other sources, the method is

applied to a rectangular coaxial system, as shown in Fig. 2.

This was previously constructed [1] for use as a coaxial re-

flection standard, but an analytic expression was not avail-

able for its characteristic impedance.

When the angle of rotation 0 in Fig. 2 is zero or 90°, a

simpler parallel configuration is obtained which has been

treated by numerous authors in an attempt to obtain an

analytic expression for the characteristic impedance. The

report by Chen [2] is an example of this approach and his

results are used for purposes of comparison. Chen attempts

to determine the capacitance per unit length from the con-

figuration of the transverse electric field. To obtain a solu-

tion it was necessary to incorporate approximations which

in turn require dimensional restrictions on application of the

results.

Skiles and Higgins [3] avoid the approximations and re-

strictions by using ortho-normal block analysis to determine

the electric field configuration. The field is then integrated

over the inner conductor to produce an expression for the

Manuscript received August 8, 1966; revised Jannary 16, 1967, and
March 10, 1967.

The authors are with the National Bureau of Standards, U. S.
Department of Commerce, Boulder, Colo.

Fig. 1. General self-shielding go-and-return circuit.

D

Fig. 2. Cross section of variable impedance line in the
nonparallel configuration.

capacitance per unit length. The results are exact but contain

infinite series whose convergence are a function of the

geometry. Cruzan and Garver [4] refine this approach and

adapt it to computer analysis. They also provide a compila-

tion and comparison of approximate solutions which will

not be repeated here.

The present method is inherently more direct for obtaining
the characteristic impedance of nonanalytic transmission SyS-

tems since the transverse field need not be obtained first.

This provides for a considerable savings of computer stor-

age and time.
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THEORETICAL DEVELOPMIWT

The following development will be restricted to lossless

systems supporting a TEM wave. With these restrictions it

can be shown [5] that the configuration of the transverse

field is exactly a static distribution satisfying Laplace’s equa-

tion. The electric field boundary conditions are those used

for a static field distribution. The magnetic field must be

tangential to the conducting surfaces; the magnetic field

pattern in the transverse plane corresponds exactly to that

arising from a static current distribution confined to the

surfaces of the perfect conductors. The differential equations

encountered in conventional transmission-line analysis can

be derived from Maxwell’s equations. This justifies the use

of static L’s and C’s in the following development.

Each of the conductors in Fig. 1 is mathematically sub-

divided into 4n sections with uniform cross sections and

parallel longitudinal axes. If the current in each of the 8n

sections is known, the effective inductance Leff can be ob-

tained directly from the following relation:

Equation (1) is derived from simple energy considerations or

Poynting’s theorem. Here Ik is the current in section k, MM

is the mutual inductance between sections k and I, and Mii

is the self-inductance of section i.

Assuming the current in each subsection to be uniformly

distributed throughout its cross section, the coefficients of

inductance itfkt used in (1) can be obtained from low-fre-

quency relations. Treating each section as an independent

conductor, one can write the voltage induced in any single

section as

(2)
1=1

The entire system of relations is then written in matrix form

as

or using a shorter notation

V = juMI.

Defining section currents to be

Ik = – jbh

or

1=–jB

and combining (4) and (5), one finds that

(3)

(4)

(5)

(1)

3s9

B = -!_ M-IV. (6)
@

Because the system is lossless, no part of the field penetrates

any of the conductor sections. Since the voltage on the con-

ductors is completely arbitrary, it is defined as zero for all

sections in one conductor and 1+jO for all sections in the

other. The voltage matrix is defined as

)1

ih
Izn+l

i4n

04.+1

(7)

The indices are chosen to simplify later work. One conductor

now has indices l~2n and 4n-1- l~6n, while the other has

indices 2n+ l~4n and 6n+ l@8n. In order to use the results

of(6) more easily, (1) is transformed into the following rela-

tion:

1 4n+l 2n+l 6n+l

APPLICAmON

Application of the above method to a real situation where

the conductivity is not infinite is justified [5] by the fact

that for any efficient transmission line the error will be

negligible.

The method of solution outlined above is applied to a

coaxial system in which both inner and outer conductors

have rectangular cross sections as shown in Fig. 2. The inner

conductor will be allowed to rotate about the center to any

angle 0. Subsection labeling is shown in Fig. 3.

The outlined method is simple, but the manual perfor-

mance of the matrix operations is impossibly tedious for all

but the lowest order of matrices. It is possible, however, to

program a computer to perform the operations and obtain

reasonably large matrix orders. This is the approach used in

following application.

Since the conductors are Iossless, the current will be con-

fined to two infinitesimally thin shells. Only a thin shell on

the inner surface of the outer conductor and one on the outer

surface of the inner conductor need be considered. The re-

sultant system of two very thin rectangular shells is mathe-
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Fig. 3. Section labeling,

matically subdivided into 8n very thin tapes with parallel

longitudinal axes. The widths of the sections are made small

enough to consider the current uniform in each individual

section. Each bk obtained from (6) contains the inverse of o;

consequently, L,~~ is independent of CO.

The effective inductance can be expressed in matrix nota-

tion, using a simple matrix operator defined to be

e = (0, . . . Ozn, I,n+, . . . l,n, o~n+, . . . o~fi,

lo~+~ . - . l*~);

the sum of the inner section currents is

% h+~ b,=9B=hW (9)
Zn+ 1 4n+l CIJ

and therefore,

L,~~ = l/Oll&l V. (lo)

The independence of inductance with respect to frequency

is now apparent. The method outlined here would be exact

in the limit as the order of the matrices becomes infinite or

as the individual sections become infinitesimal.

Physical symmetry allows a twofold reduction in the order

of the matrices. To facilitate this reduction, the section

widths W, chosen so as to maintain physical symmetry are

defined to be

Wi = w4n+i ; i=l,2,3. .o4n; (11)

the symmetry, therefore, continues into the unknown current

magnitudes which are represented as

bi = b4n~i; i=l,2,3. ..4n. (12)

The order of (3) can then be reduced to the following form:

. (13)

If the current in each section is assumed to be uniform,

the M~z in (13) can be calculated from low-frequency rela-

tions. Using the relations given in the Appendix, the final

program calculates the M~l. It then substitutes these values

into (13), inverts to determine the currents, and uses (10)

to calculate the effective inductance per unit length. Upon

determining the effective inductance, the approximate char-

acteristic impedance is found from the following relation:

Z,ff = vL.fi (14)

where v is the velocity of propagation and is assumed to be

the velocity of light. The value predicted by the computer for

Z,ff is a function of the numbe~ of subsec~ions and ~he man-

ner in which the section widths are chosen. The problem of

width selection will be considered first.

METHOD OF SUBDIVISION

The method of subdivision given here, although not

unique, was found to give good convergence for this partic-

ular problem.

Preliminary computer results, with the inner and outer

conductors each divided into 4n equal parts, indicated that

the current distribution is a slowly changing function of sub-

section position in the outer conductor. The current dis-

tribution, however, is a rapidly varying function of section

position in the inner conductor where most of the current

is concentrated at the corners. For all later solutions the top

and side of the outer conductor are each divided into n equal

parts.

To validate more closely the assumption that the current

is uniform in every individual section, the inner conductor

is divided into smaller sections near its corners than at the

center. The widths of the first n/2 sections in the top of the

inner conductor are found from the following arbitrary ex-

pression:

c,

‘z”+’ = (?2/2 + 2 – k)~
;k=l,2, ..., ~ ; even n (15)

where

c’=%++]”(“)
The value of W is obtained from the geometry as shown in

Fig. 2, while ~, an arbitrary constant, is varied to produce

better convergence. A @of three is found to be satisfactory.

For the side of the inner conductor,

w3.+k = k=l,2, ...,;;

(:+~-’)

fi’

even n (17)

where
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C2’%LT-1“8)
and the value of t,like W, is determined by the physical

dimensions of the problem.

LIMITING VALUE OF IMPEDANCE

The method of subdivision, although more complex, is

similar to that used for a strip line [6]. The latter method

[6] used to obtain a limit for the inductance as a function

of the matrix order is applicable to this problem. The im-

pedance predicted for finite matrix order can be related to

the limiting value (n+ co) in the following manner:

zeff( ~ ) = Zeff(n) + an–” (19)

where n is the number of sections in one-eighth of the cross

section. Choosing four orders of subdivision or matrix order

such that

nl/n2 = n3/n4,

one finds an expression for the limiting value of inductance

in terms of finite results to be

Z(nJZ(n.J – Z(7zJZ(n3)
zeff(~) =

Z(nJ – Z(n2) – Z(n3) + Z(n4)
. (20)

Using order values of 6, 8, 12, and 16 yields convergence

of one part in 1(Y. This is the uncertainty to be expected in

the theoretical results obtained for this paper. The time for

each set of four values to be determined on a high-speed

digital computer is about l+ minutes.

AN APPROXIMATE EXPRESSION

The approximate analytic expression derived by Chen [2]

for the characteristic impedance of rectangular coaxial lines

is

TABLE I

COMPARISON OF CALCULATED RESULTS

1 2 3 4 5
—

W/b t/b o (deg) Z. (ohms) Z1 (ohms)

0.6499 0.2592 0 57.66 57.69
0.6499 0.2592 90 46.37 46.28

0.6429 0.2945 0 55.15 55.19
0.6429 0.2945 90 44.79 44.64

0.6429 0.3083 0 54.12 54.12
0.6429 0.3083 90 43.98 43.83

W, f, b, undo = line parameters (see Fig. 2),
20= approximate solution.
22= matrix solution.

EXPERIMENTAL SETUP

A rectangular transmission line with a rotating outer and

fixed inner conductor is described in reference [I]. A time-

domain reflectometer (TDR) [7]-[10] and x-y recording

system were used to plot the characteristic impedance Z of

the rectangular line as a function of angle of rotation. Pre-

cision coaxial air lines with various characteristic imped-

ances were used to calibrate the TDR and recording system

as outlined in reference [1]. The step discontinuities at the

ends of the rectangular line have largely been compensated

for experimentally.

CONCLUSION

Figures 4, 5, and 6 show the experimental curves of the

three cases discussed in this paper. The points superimposed

on the curves are the calculated matrix values (circles) and

the approximate values obtained with (22) (solid points). The

outer conductor in every case has a width D and a height b

2. =
94.15

(21)
W/b if/l\ {2 – t/b} rt/b(2 – t/b)71 “

-a ‘7{(CT) in I ——-- I + in I --——- I}
1

This expression is valid only when the angle between the

conductors in Fig. 2 is zero or 90°. A further dimensional

limitation requires t< b/2. The use of (21) in the 90° con-

figuration violates the dimensional restriction imposed on it

by Chen; nevertheless, good agreement is still obtained be-

tween it and the matrix solution values.
The following empirical expression obtained from refer-

ence [1] is used to extend the application of (21) to the

rotated case:

z(e) = +[2.(0) (Cos 20 + 1) + .2,(90)(1 – Cos 20)]. (22)

Values for characteristic impedance obtained for three sets

of dimensions from the computer program, Zt, and (21), 2.,

are shown in Table I. The agreement is very good, especially

where the limitation to Chen’s relation has not been violated.

The computer solution contains no dimensional limitation

and is, therefore, generally applicable.

/t/b/” L (1 – t/b)2 J)

of 3.500 and 0.750 inches, respectively.

Examination of Figs. 4, 5, and 6 shows that maximum

impedance deviations occur in the zero and 90° positions of

the variable impedance line. The maximum deviation be-

tween measured and matrix predicted characteristic imped-

ance is, in all cases, less than 0.4 percent. Between 20° and

70° the difference is less than 0.1 percent.

The solution of (22) and the matrix solution agree so

closely with each other from Oto 45° that they are practically

indistinguishable on the curves. Only where the dimensional

limitations of Chen are violated is the difference observed.

The results verify the applicability of the inductance matrix

approach to the rectangular transmission line. The results

show that a programmed matrix solution as outlined in this

paper should be feasible for any geometrical configuration

which can support a TEM mode. The accuracy of the results

will be limited only by storage capacity of the computer,
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Fig. 7. Cross seetion of nonparallel tapes.
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Fig. 8. Cross section of perpendicular tapes.
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This method provides an effective technique for deter-

mining inductance and current distribution of transmission-

line configurations for which an analytic solution is too

difficult to obtain.

SWARY

A matrix method has been developed for determining the

inductance and characteristic impedance of a rectangular

transmission line. This line may have any dimensions, and

the coaxial conductors do not have to be in a parallel cross-

sectional configuration.

The results of the matrix approach have been compared

with values obtained from Chen’s equation. The matrix
solution is also compared with the experimental results ob-

tained with a TDR system. These results show the maximum

measured characteristic impedance deviation to be less than

0.4 percent from the calculated values.

APPENDIX

The application of the method outlined in this paper re-

quires the use of dc relations for the determination of the

inductance coefficients. Application of Neumann’s form for

the mutual inductance equation to the geometries in ques-

tion is straightforward although somewhat tedious.

The self-inductance per unit length of a thin tape, whose

length 1 is much greater than its width w, is found to be

S/1 = 0.2[ln 21 – in W + ii]. (23)

The mutual inductance per unit length between two very

long thin tapes with parallel longitudinal axes but non-

parallel transverse axes is far more tedious to obtain. The

geometry of the transverse plane is shown in Fig. 7. The final

results are found to be

(24)

where m= tan 0, and b =p– E tan 0.

For compactness as well as ease of programming, the

limits on the integration of the two variables xl and x.2have

been included in the final results. This relation is adequate

for any angle of rotation, except 7r/2 or an odd multiple. It

was therefore necessary to determine the mutual coefficient

for this angle as a special case.

The mutual inductance per unit length of two long thin

tapes with parallel longitudinal axes and perpendicular trans-

verse axes as shown in Fig. 8 is found to be

0.2
m/1 = —

{
—X1X2In [X12 + x2z]l/2

(,IJ1W2

xl 2 — ~22

( )}1

P+lJ 2

+2
tan–l 2 E (xl) (X2)

X2 E–UI P

+ 0.2[ln (21) + +] (25)

where the integration limits on xl and X2 have again been
retained in the final results.

It is noted that the results obtained above are not length-

independent. The reason for this is the application to indi-

vidual circuit segments rather than a closed system. For a.

go-and-return system traversed by currents in opposite direc-

tions all such terms will cancel, producing effective induc-

tance coefficients which are independent of length. The

term [ln(21)+~] can therefore be deleted for the go-and-

retum system.
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Radiation from an Infinite Array of Parallel-Plate

Waveguides with Thick Walls

SHUNG WU LEE, MEMBER, IEEE

Abstract—A serni-itinite array of parallel-plate waveguides with

walls of finite thickness is excited by incident TEM modes in every wave-

goide identically. By proper application of the boundary conditions, two

Wiener-Hopf equations are obtained which, however, cannot be solved

by the standard techniques. A method originated by Jones [6] is applied

to recast these two eqnations so that the forms of the solutions are found.

The solntions involve constants to be determined by an infinite set of

linear simultaneous equations which converge absolutely. When the thick-

ness of the walls b is small compared with the wavelength 2, explicit

solutions in the order of O(b/1.) are found in very simple forms.

I. INTRODUCTION

T
HE PROBLEM of radiation from an infinite array

of parallel-plate waveguides is of great interest

theoretically and practically. In the theoretical aspect,

it offers an excellent example for the study of periodic struc-

tures. In particular, it was one of the first problems solved

exactly by the Wiener-Hopf technique [1]. From the prac-

tical point of view, it simulates a phased array of waveguides

which is widely used in today’s communication and radar

systems. Wu and Galindo [2], for example, made an interest-

ing investigation of the mutual coupling effects of phased

arrays by using the solution of this problem.

Most of the analyses in connection with this problem are

based on the assumption that the walls of the guides are

vanishingly thin. In practice, however, walls of appreciable

thickness are unavoidable. Therefore, it is desirable to study

the effect of this thickness on the radiation properties.

Among past works on the thick-wall probem, Epstein [3]

gave an empirical correction to the case of infinitely thin

wall based on experimental evidence. After an unsuccessful

attempt to find a rigorous theoretical solution, Primich [4]

attacked the problem by variational techniques, and ob-

tained some results checked well by experiments. Most re-

cently, Galindo and Wu [5] formulated the problem as an

integral equation which is valid for all scanning angles.

However, that integral equation, as stated by the authors, is

nonintegrable, and numerical methods using a high-speed

computer were resorted to for an approximated solution.

It is the purpose of this paper to present a solution based

on the Wiener-Hopf technique for the broadside radiation

of an infinite array of parallel-plate waveguides with thick

walls. Particularly when the thickness of the wall is small in

terms of wavelength, very simple expressions for the reflec-

tion coefficient and the radiated far field are obtained. Be-

cause of the complications and the lengthiness of the manip-

ulations, some detailed derivations are omitted in this paper;

interested readers are referred to a technical report under

the same title issued by Hughes Aircraft Company [10].

II. STATEMENT OF THE PROBLEM

Manuscript received September 15, 1966; revised December 19, Consider an infinite array of parallel-plate waveguides as

1966. The work reported in this paper was supported by the U. S. Air shown in Fig. 1. The thickness of the guide wall is b, and
Force Cambridge Research Laboratory, Bedford, Mass., under Con- the width of the guide is a. The dominant TEM modes are
tract AF-19(628)-4984.

The author is with the Electromagnetic Laboratory, Hughes Air- excited inside every waveguide with equal amplitude and

craft Company, Ground SystemsGroup, Fullerton, Calif. phase. The problem is then to find the radiated field in the


