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Current Distribution and Impedance of
Lossless Conductor Systems

ROBERT L. BROOKE anD JOSE E. CRUZ

Abstract—A general method for determining the characteristic im-
pedance of uniform, lossless transmission systems is developed. The cur-
rent distribution within the system is determined by means of a matrix
equation programmed for computer solution. Once the current distribu-
tion is known, the inductance per unit length and characteristic impedance
are determined. The results obtained by applying this method to several
rectangular coaxial systems are compared with the predictions of an
approximate analytic expression. The reflection coefficient of a variable
characteristic impedance coaxial line is measured on a time-domain
reflectometer (TDR), and the results are compared with both the matrix
method and the approximate analytic expression.

INTRODUCTION

GENERAL matrix method is developed for deter-
mining the current distribution in the transverse

plane of any uniform, lossless transmission system.

Once the current distribution is known for an arbitrary

system (Fig. 1), the inductance per unit length and char-
acteristic impedance can be determined. With an additional
step, omitted in this paper, the transverse magnetic field can
be mapped for the system under consideration.

This method is not limited to any particular cross-sectional
configuration and requires no dimensional restrictions. To
provide a comparison with other sources, the method is
applied to a rectangular coaxial system, as shown in Fig. 2.
This was previously constructed [1] for use as a coaxial re-
flection standard, but an analytic expression was not avail-
able for its characteristic impedance.

When the angle of rotation 6 in Fig. 2 is zero or 90°, a
simpler parallel configuration is obtained which has been
treated by numerous authors in an attempt to obtain an
analytic expression for the characteristic impedance. The
report by Chen [2] is an example of this approach and his
results are used for purposes of comparison. Chen attempts
to determine the capacitance per unit length from the con-
figuration of the transverse electric field. To obtain a solu-
tion it was necessary to incorporate approximations which
in turn require dimensional restrictions on application of the
results.

Skiles and Higgins [3] avoid the approximations and re-
strictions by using ortho-normal block analysis to determine
the electric field configuration. The ficld is then integrated
over the inner conductor to produce an expression for the
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Fig. 1. General self-shielding go-and-return circuit.
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Fig. 2. Cross section of variable impedance line in the
nonparallel configuration.

capacitance per unit length. The results are exact but contain
infinite series whose convergences are a function of the
geometry. Cruzan and Garver [4] refine this approach and
adapt it to computer analysis. They also provide a compila-
tion and comparison of approximate solutions which will
not be repeated here.

The present method is inherently more direct for obtaining
the characteristic impedance of nonanalytic transmission sys-
tems since the transverse field need not be obtained first.
This provides for a considerable savings of computer stor-
age and time.
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THEORETICAL DEVELOPMENT

The following development will be restricted to lossless
systems supporting a TEM wave. With these restrictions it
can be shown [5] that the configuration of the transverse
field is exactly a static distribution satisfying Laplace’s equa-
tion. The electric field boundary conditions are those used
for a static field distribution. The magnetic field must be
tangential to the conducting surfaces; the magnetic field
pattern in the transverse plane corresponds exactly to that
arising from a static current distribution confined to the
surfaces of the perfect conductors. The differential equations
encountered in conventional transmission-line analysis can
be derived from Maxwell’s equations. This justifies the use
of static L’s and C’s in the following development.

Each of the conductors in Fig. 1 is mathematically sub-
divided into 4n sections with uniform cross sections and
parallel longitudinal axes. If the current in each of the 8»
sections is known, the effective inductance L. can be ob-
tained directly from the following relation:

8n 8n

3 L-IiMy

k=1 l=1

| Itotal IZ

Legs = 1)

Equation (1) is derived from simple energy considerations or
Poynting’s theorem. Here I is the current in section k, My,
is the mutual inductance between sections k and /, and M;
is the self-inductance of section i.

Assuming the current in each subsection to be uniformly
distributed throughout its cross section, the coefficients of
inductance M;; used in (1) can be obtained from low-fre-
quency relations. Treating each section as an independent
conductor, one can write the voltage induced in any single
section as

8n
Vp = jw Z Mkzlz. (2)
=1

The entire system of relations is then written in matrix form
as

V1 Mg oMy | (11
ek I
Ve Msn,1+ * Msyn) Lsn
or using a shorter notation
V = joMI. 4
Defining section currents to be
Iy = — jbs
or
I=-—4B 5)

and combining (4) and (5), one finds that
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1
B =— M.

[O)

(6)

Because the system is lossless, no part of the field penetrates
any of the conductor sections. Since the voltage on the con-
ductors is completely arbitrary, it is defined as zero for all
sections in one conductor and 14-j0 for all sections in the
other. The voltage matrix is defined as

01

627;
12n+1
Vv, .
: o @
Vsn : 4nt-1
(')Gn

16n+1

i8n
The indices are chosen to simplify later work. One conductor
now has indices 1—-2n and 4n-+1—6n, while the other has
indices 2n-+1—4n and 6n-+1—8xn. In order to use the results

of (6) more easily, (1) is transformed into the following rela-
tion:

1 1
Le“ = 2n 6n = 4n 8n ’ (8)
wak-l—wEbk wEbk—l'wEbk
1 4n+1 2n+1 6n-+-1
APPLICATION

Application of the above method to a real situation where
the conductivity is not infinite is justified [5] by the fact
that for any efficient transmission line the error will be
negligible.

The method of solution outlined above is applied to a
coaxial system in which both inner and outer conductors
have rectangular cross sections as shown in Fig. 2. The inner
conductor will be allowed to rotate about the center to any
angle 6. Subsection labeling is shown in Fig. 3.

The outlined method is simple, but the manual perfor-
mance of the matrix operations is impossibly tedious for all
but the lowest order of matrices. It is possible, however, to
program a computer to perform the operations and obtain
reasonably large matrix orders. This is the approach used in
following application.

Since the conductors are lossless, the current will be con-
fined to two infinitesimally thin shells. Only a thin shell on
the inner surface of the outer conductor and one on the outer
surface of the inner conductor need be considered. The re-
sultant system of two very thin rectangular shells is mathe-
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Fig. 3. Section labeling.

matically subdivided into 8n very thin tapes with parallel
longitudinal axes. The widths of the sections are made small
enough to consider the current uniform in each individual
section. Each b, obtained from (6) contains the inverse of w;
consequently, L. is independent of w.

The effective inductance can be expressed in matrix nota-
tion, using a simple matrix operator defined to be

0 = (01 tee O‘m, 12n+1 et 14n, O4n+1 v 'Osn,
16n+1 v 18n);
the sum of the inner section currents is
4n 8n 1
Dbt D b =6B=-—0M1V 9)
2n+1 4n+1 w
and therefore,
Lest = I/OM_I V. (10)

The independence of inductance with respect to frequency
is now apparent. The method outlined here would be exact
in the limit as the order of the matrices becomes infinite or
as the individual sections become infinitesimal.

Physical symmetry allows a twofold reduction in the order
of the matrices. To facilitate this reduction, the section
widths W, chosen so as to maintain physical symmetry are
defined to be

Wi = Wints; 1=1,2,3..4n; 1y

the symmetry, therefore, continues into the unknown current
magnitudes which are represented as

b,' = b4n_|_,;; l = 1, 2, 3 -« - 4n. (12)

The order of (3) can then be reduced to the following form:

Vl ][[1,1 PR M1,4n
el |
:V47L M4n,l M ]l[4n,4n
(M1, 4041 ~ M50 b1
+ | - s

M4n,4n+1 e M4n,8n b4n
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If the current in each section is assumed to be uniform,
the My, in (13) can be calculated from low-frequency rela-
tions. Using the relations given in the Appendix, the final
program calculates the M;;. It then substitutes these values
into (13), inverts to determine the currents, and uses (10)
to calculate the effective inductance per unit length. Upon
determining the effective inductance, the approximate char-
acteristic impedance is found from the following relation:

Zots = vLets (14)
where v is the velocity of propagation and is assumed to be
the velocity of light. The value predicted by the computer for
Z. is a function of the number of subsections and the man-
ner in which the section widths are chosen. The problem of
width selection will be considered first.

METHOD OF SUBDIVISION

The method of subdivision given here, although not
unique, was found to give good convergence for this partic-
ular problem.

Preliminary computer results, with the inner and outer
conductors each divided into 4n equal parts, indicated that
the current distribution is a slowly changing function of sub-
section position in the outer conductor. The current dis-
tribution, however, is a rapidly varying function of section
position in the inner conductor where most of the current
is concentrated at the corners. For all later solutions the top
and side of the outer conductor are each divided into # equal
parts.

To validate more closely the assumption that the current
is uniform in every individual section, the inner conductor
is divided into smaller sections near its corners than at the
center. The widths of the first n/2 sections in the top of the
inner conductor are found from the following arbitrary ex-
pression:

Wanie = “ =12 i (15)
ontk = (n/z + 2 _ ]C)ﬁ’ - L4 ’ 9 y even n
where
W n/2 1
Ci=—2, . (16)

_2—]9:1 n 8
—+2—k
G+2-9)

The value of W is obtained from the geometry as shown in
Fig. 2, while 8, an arbitrary constant, is varied to produce
better convergence. A 8 of three is found to be satisfactory.
For the side of the inner conductor,

Cg 7
W3n+k= ; k:172;"'7-—*;

n ]
—+2—-%
(F+2-%)

evenn (17)

where
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t 2l 1

Zal (o Y
(5+2-%)

and the value of ¢, like W, is determined by the physical
dimensions of the problem.

C, (18)

LIMITING VALUE OF IMPEDANCE

The method of subdivision, although more complex, is
similar to that used for a strip line [6]. The latter method
[6] used to obtain a limit for the inductance as a function
of the matrix order is applicable to this problem. The im-
pedance predicted for finite matrix order can be related to
the limiting value (n#— ) in the following manner:

Zeis(0) = Zegs(n) + an— (19)

where n is the number of sections in one-eighth of the cross
section. Choosing four orders of subdivision or matrix order
such that

nl/n2 713/’”4,

one finds an expression for the limiting value of inductance
in terms of finite results to be

Z(n)Z(ne) — Z(n2)Z(ns)
Z(ny) — Z(ng) — Z(ns) + Z(ng)
Using order values of 6, 8, 12, and 16 yields convergence
of one part in 104 This is the uncertainty to be expected in
the theoretical results obtained for this paper. The time for

each set of four values to be determined on a high-speed
digital computer is about 13 minutes.

Zets( o) =

(20)

AN APPROXIMATE EXPRESSION

The approximate analytic expression derived by Chen [2]
for the characteristic impedance of rectangular coaxial lines
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TABLE I
CoMPARISON OF CALCULATED RESULTS
1 2 3 4 5
W/b t/b 6 (deg) Z,, (ohms) Z, (ohms)
0.6499 0.2592 0 57.66 57.69
0.6499 0.2592 90 46.37 46.28
0.6429 0.2945 0 55.15 55.19
0.6429 0.2945 90 44.79 44.64
0.6429 0.3083 0 54.12 54.12
0.6429 0.3083 90 43.98 43.83

W, t, b, and 6 = line parameters (see Fig. 2).
Z,=approximate solution,
Z,=matrix solution.

EXPERIMENTAL SETUP

A rectangular transmission line with a rotating outer and
fixed inner conductor is described in reference [1]. A time-
domain reflectometer (TDR) [7]-[10] and x-y recording
system were used to plot the characteristic impedance Z of
the rectangular line as a function of angle of rotation. Pre-
cision coaxial air lines with various characteristic imped-
ances were used to calibrate the TDR and recording system
as outlined in reference [1]. The step discontinuities at the
ends of the rectangular line have largely been compensated
for experimentally. '

CONCLUSION

Figures 4, 5, and 6 show the experimental curves of the
three cases discussed in this paper. The points superimposed
on the curves are the calculated matrix values (circles) and
the approximate values obtained with (22) (solid points). The
outer conductor in every case has a width D and a height b

94.15
. ©2))

<

W/b 1

=)

This expression is valid only when the angle between the
conductors in Fig. 2 is zero or 90°. A further dimensional
limitation requires ¢<b/2. The use of (21) in the 90° con-
figuration violates the dimensional restriction imposed on it
by Chen; nevertheless, good agreement is still obtained be-
tween it and the matrix solution values.

The following empirical expression obtained from refer-
ence [1] is used to extend the application of (21) to the
rotated case:

Z(0) = 1[Z.(0)(cos 26 + 1) + Z,(90)(1 — cos 28)]. (22)

Values for characteristic impedance obtained for three sets
of dimensions from the computer program, Z;, and (21), Z,,
are shown in Table I. The agreement is very good, especially
where the limitation to Chen’s relation has not been violated.
The computer solution contains no dimensional limitation
and is, therefore, generally applicable.

1 — t/3+_1r_

()

of 3.500 and 0.750 inches, respectively.

Examination of Figs. 4, 5, and 6 shows that maximum
impedance deviations occur in the zero and 90° positions of
the variable impedance line. The maximum deviation be-
tween measured and matrix predicted characteristic imped-
ance is, in all cases, less than 0.4 percent. Between 20° and
70° the difference is less than 0.1 percent.

The solution of (22) and the matrix solution agree so
closely with each other from 0 to 45° that they are practically
indistinguishable on the curves. Only where the dimensional
limitations of Chen are violated is the difference observed.

The results verify the applicability of the inductance matrix
approach to the rectangular transmission line. The results
show that a programmed matrix solution as outlined in this
paper should be feasible for any geometrical configuration
which can support a TEM mode. The accuracy of the results
will be limited only by storage capacity of the computer.,
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Figs. 4, 5 and 6. Characteristic impedance versus angle of rotation,
with theoretical matrix values (circles) and approximate analytic
values (points) superimposed on the experimental curves.
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W,

W,

Fig. 7. Cross section of nonparallel tapes.

m/l =
/ 4

wiwe COS @

2

m241

( 1 T2 — X3
+ 22l — mzxs + b) tan—! [—:I}
2 moxs + b

)

This method provides an effective technique for deter-
mining inductance and current distribution of transmission-
line configurations for which an analytic solution is too
difficult to obtain.

SUMMARY

A matrix method has been developed for determining the
inductance and characteristic impedance of a rectangular
transmission line. This line may have any dimensions, and
the coaxial conductors do not have to be in a parallel cross-
sectional configuration.

The results of the matrix approach have been compared
with values obtained from Chen’s equation. The matrix
solution is also compared with the experimental results ob-
tained with a TDR system. These results show the maximum
measured characteristic impedance deviation to be less than
0.4 percent from the calculated values.

APPENDIX

The application of the method outlined in this paper re-
quires the use of dc relations for the determination of the
inductance coefficients. Application of Neumann’s form for
the mutual inductance equation to the geometries in ques-
tion is straightforward although somewhat tedious.

The self-inductance per unit length of a thin tape, whose
length / is much greater than its width w, is found to be

£/l =02[In2 —In W + 3]. (23)

The mutual inductance per unit length between two very
long thin tapes with parallel longitudinal axes but non-
parallel transverse axes is far more tedious to obtain. The
geometry of the transverse plane is shown in Fig. 7. The final
results are found to be

1 l:mb2 — mzt — 2bxi|
tan

0.2 1 b)?
—_{_l:(xz — )% — (m—xl'i——)‘] In [(xz — z1)? 4 (nzs + b)2]
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W,
E
P
Wy
Fig. 8. Cross section of perpendicular tapes.
m? 41
1 l:(m2 + 1z - (mb — 1131):]
mxy+ b
wl E+wy cos 8
(1) (2)
0 E
(24)

where m=tan 6, and b=p—E tan 6.

For compactness as well as ease of programming, the
limits on the integration of the two variables x; and x. have
been included in the final results. This relation is adequate
for any angle of rotation, except /2 or an odd multiple. It
was therefore necessary to determine the mutual coefficient
for this angle as a special case.

The mutual inductance per unit length of two long thin
tapes with parallel longitudinal axes and perpendicular trans-
verse axes as shown in Fig. 8 is found to be

0.2

m/l = {"—x1$2 In [z? + 222]1/2

wiws

+ 0.2[In (21) + 3] (25)

where the integration limits on x; and x, have again been
retained in the final results.

It is noted that the results obtained above are not length-
independent. The reason for this is the application to indi-
vidual circuit segments rather than a closed system. For a
go-and-return system traversed by currents in opposite direc-
tions all such terms will cancel, producing effective induc-
tance coefficients which are independent of length. The
term [In(2))+3%] can therefore be deleted for the go-and-
return system.
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Radiation from an Infinite Array of Parallel-Plate
Waveguides with Thick Walls

SHUNG WU LEE, MEMBER, IEEE

Abstract—A semi-infinite array of parallel-plate waveguides with
walls of finite thickness is excited by incident TEM modes in every wave-
guide identically. By proper application of the boundary conditions, two
Wiener-Hopf equations are obtained which, however, cannot be solved
by the standard techniques. A method originated by Jones [6] is applied
to recast these two equations so that the forms of the solutions are found.
The solutions involve constants to be determined by an infinite set of
linear simultaneous equations which converge absolutely. When the thick-
ness of the walls b is small compared with the wavelength 2., explicit
solutions in the order of 0(b/2.) are found in very simple forms.

1. INTRODUCTION

HE PROBLEM of radiation from an infinite array
Tof parallel-plate waveguides is of great interest
theoretically and practically. In the theoretical aspect,
it offers an excellent example for the study of periodic struc-
tures. In particular, it was one of the first problems solved
exactly by the Wiener-Hopf technique [1]. From the prac-
tical point of view, it simulates a phased array of waveguides
which is widely used in today’s communication and radar
systems. Wu and Galindo [2], for example, made an interest-
ing investigation of the mutual coupling effects of phased
arrays by using the solution of this problem.
Most of the analyses in connection with this problem are
based on the assumption that the walls of the guides are
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vanishingly thin. In practice, however, walls of appreciable
thickness are unavoidable. Therefore, it is desirable to study
the effect of this thickness on the radiation properties.
Among past works on the thick-wall probem, Epstein [3]
gave an empirical correction to the case of infinitely thin
wall based on experimental evidence. After an unsuccessful
attempt to find a rigorous theoretical solution, Primich [4]
attacked the problem by variational techniques, and ob-
tained some results checked well by experiments. Most re-
cently, Galindo and Wu [5] formulated the problem as an
integral equation which is valid for all scanning angles.
However, that integral equation, as stated by the authors, is
nonintegrable, and numerical methods using a high-speed
computer were resorted to for an approximated solution.

It is the purpose of this paper to present a solution based
on the Wiener-Hopf technique for the broadside radiation
of an infinite array of parallel-plate waveguides with thick
walls. Particularly when the thickness of the wall is small in
terms of wavelength, very simple expressions for the reflec-
tion coefficient and the radiated far field are obtained. Be-
cause of the complications and the lengthiness of the manip-
ulations, some detailed derivations are omitted in this paper;
interested readers are referred to a technical report under
the same title issued by Hughes Aircraft Company [10].

II. STATEMENT OF THE PROBLEM

Consider an infinite array of parallel-plate waveguides as
shown in Fig. 1. The thickness of the guide wall is b, and
the width of the guide is a. The dominant TEM modes are
excited inside every waveguide with equal amplitude and
phase. The problem is then to find the radiated field in the



